K-Nearest Neighbors Classifier
knn.intcv.Rd
Build a K-Nearest Neighbors classifier using internal cross validation to choose the turning parameter, with a 5-fold cross validation as default.
Arguments
- kfold
number of folds. By default,
kfold = 5
.- X
dataset to be trained. This dataset must have rows as probes and columns as samples.
- y
a vector of sample group of each sample for the dataset to be trained. It must have an equal length to the number of samples in
X
.- seed
an integer used to initialize a pseudorandom number generator.
Value
a list of 4 elements:
- mc
an internal misclassification error rate
- time
the processing time of performing internal validation with kNN
- model
a kNN classifier
Examples
set.seed(101)
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect)
%in% ctrl.genes, ]
group.id <- substr(colnames(biological.effect.nc), 7, 7)
biological.effect.train.ind <- colnames(biological.effect.nc)[c(sample(which(
group.id == "E"), size = 64),
sample(which(group.id == "V"), size = 64))]
biological.effect.nc.tr <- biological.effect.nc[, biological.effect.train.ind]
knn.int <- knn.intcv(X = biological.effect.nc.tr,
y = substr(colnames(biological.effect.nc.tr), 7, 7),
kfold = 5, seed = 1)
#> Loading required package: ggplot2
#> Warning: package 'ggplot2' was built under R version 4.1.3
#> Loading required package: lattice