Classification to Nearest Centroids Classifier
clanc.intcv.Rd
Build a Classification to Nearest Centroids classifier on the objective data.
Arguments
- kfold
number of folds. By default,
kfold = 5
.- X
dataset to be trained. This dataset must have rows as probes and columns as samples.
- y
a vector of sample group of each sample for the dataset to be trained. It must have an equal length to the number of samples in
X
.- seed
an integer used to initialize a pseudorandom number generator.
Value
a list of 4 elements:
- mc
an internal misclassification error rate
- time
the processing time of performing internal validation with ClaNC
- model
a ClaNC classifier, resulted from
cv.fit
References
Alan R. Dabney, Author Notes.(2005) ClaNC: point-and-click software for classifying microarrays to nearest centroids, https://academic.oup.com/bioinformatics/article/22/1/122/219377
Examples
set.seed(101)
biological.effect <- estimate.biological.effect(uhdata = uhdata.pl)
ctrl.genes <- unique(rownames(uhdata.pl))[grep("NC", unique(rownames(uhdata.pl)))]
biological.effect.nc <- biological.effect[!rownames(biological.effect)
%in% ctrl.genes, ]
group.id <- substr(colnames(biological.effect.nc), 7, 7)
biological.effect.train.ind <- colnames(biological.effect.nc)[c(sample(which(
group.id == "E"), size = 64),
sample(which(group.id == "V"), size = 64))]
biological.effect.nc.tr <- biological.effect.nc[, biological.effect.train.ind]
clanc.int <- clanc.intcv(X = biological.effect.nc.tr,
y = substr(colnames(biological.effect.nc.tr), 7, 7),
kfold = 5, seed = 1)
#> CV:12345